Good afternoon!

Today we will calculate the total surface area of polyhedrons and rounded shapes.

So that we can develop our brain's ability to analyze a 3D shape.

Keys to Success:

- I can identify the solid and correct formulas
- I can identify base(s) versus lateral area
- I can substitute numbers into the formula and use BEDMAS to calculate the total area

Area of A Cylinder

- Cylinders have two bases and a lateral surface so we can use the same formula we used for prisms!

$$
A_{T}=2 A_{b}+A_{L}
$$

Area of $\mathbf{1}$ base:	$A=\pi r^{2}$
Area of $\mathbf{2}$ bases:	$A=2 \pi r^{2}$
Lateral Area:	$A=2 \pi r h$

Putting it all together....

$$
A_{T}=2 A_{b}+A_{L} \quad \text { or } \quad A_{T}=2 \pi r^{2}+2 \pi r h
$$

Example:

- A cylinder has a radius of 4 m , and a height of 6 m . What is the lateral area? What is the total area?

Lateral Area: (Remember to show your formula each time!) $A_{L}=2 \pi r h$
$=2(3.14)(4 \mathrm{~m})(6 \mathrm{~m})$
$=150.72 \mathrm{~m}^{2}$

Area of 1 base:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{b}} & =\pi r^{2} \\
& =(3.14)(4)^{2} \\
& =\underline{50.24 \mathrm{~m}^{2}}
\end{aligned}
$$

Total area:

$$
\begin{aligned}
A_{L} & =2 A_{b}+A_{L} \\
& =2\left(50.24 \mathrm{~m}^{2}\right)+150.72 \mathrm{~m}^{2} \\
& =100.48 \mathrm{~m}^{2}+150.72 \mathrm{~m}^{2} \\
& =\underline{\mathbf{2 5 1}} .20 \mathrm{~m}^{2}
\end{aligned}
$$

Area of Pyramids

What is the lateral area of this pyramid?

$$
\begin{aligned}
A_{L} & =\frac{P_{b} \times s}{2} \\
& =\frac{(5.2 \times 3) \times(7.4)}{2} \\
& =57.72 \mathrm{~cm}^{2}
\end{aligned}
$$

SUMMARY*:

Cube:
Prism:

$$
\mathrm{A}_{\mathrm{T}}=2 \mathrm{~A}_{\mathrm{b}}+\mathrm{A}_{\mathrm{L}} \quad \text { OR } \quad \mathrm{A}_{\mathrm{T}}=2 \mathrm{~A}_{\mathrm{b}}+P_{b} \times h
$$

Cylinder:

$$
A_{T}=2 A_{b}+A_{L} \quad \text { or } \quad A_{T}=2 \pi r^{2}+2 \pi r h
$$

Pyramid: $\mathrm{A}_{\mathrm{T}}=\mathrm{A}_{\mathrm{b}}+\mathrm{A}_{\mathrm{L}} \quad$ OR $\mathrm{A}_{\mathrm{T}}=\mathrm{A}_{\mathrm{b}}+\frac{P_{b} \times s}{2}$
*Try it! Don't like these formulas? Breaking it up into the net still works. It just takes a little longer.

Surface Area of Cones

The lateral area of a cone is:
$A_{L}=\pi r s$

Much like a pyramid, there's only ONE base, and the lateral area to deal with.

$$
\begin{aligned}
& A_{T}=A_{B}+A_{L} \\
& A_{T}=\pi r^{2}+\pi r s
\end{aligned}
$$

Example 1

Calculate the total area of a cone with a 20 cm diameter, and 10 cm slant height.

$$
\begin{aligned}
A_{B} & =\pi r^{2} \\
& =(3.14)(10 \mathrm{~cm})^{2} \\
& =314 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
A_{L}=\pi r s
$$

$$
=3.14(10 \mathrm{~cm})(10 \mathrm{~cm})
$$

$$
=314 \mathrm{~cm}^{2}
$$

$$
\begin{aligned}
A_{T} & =\pi r^{2}+\pi r s \\
& =314 \mathrm{~cm}^{2}+314 \mathrm{~cm}^{2} \\
& =628 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 2

Calculate the total area of a cone with an 8 cm radius, and 6 cm height.
What's MISSING from the above sentence?
That's right...we have the height, not the SLANT HEIGHT.
$a^{2}+b^{2}=c^{2}$ Can you use this to find the slant height? Slant height $=10 \mathrm{~cm}$!

$$
\begin{aligned}
A_{B} & =\pi r^{2} \\
& =(3.14)(8 \mathrm{~cm})^{2} \\
& =200.96 \mathrm{~cm}^{2}
\end{aligned}
$$

$\mathrm{A}_{\mathrm{L}}=\pi \mathrm{r}$
$=3.14(8 \mathrm{~cm})(10 \mathrm{~cm})$
$=251.2 \mathrm{~cm}^{2}$

$$
\begin{aligned}
A_{T} & =\pi r^{2}+\pi r s \\
& =200.96 \mathrm{~cm}^{2}+251.2 \mathrm{~cm}^{2} \\
& =452.16 \mathrm{~cm}^{2}
\end{aligned}
$$

Surface Area of a Sphere

- The good news is that you won't see where this formula comes from unless you take calculus in CEGEP or University. Until then....

$$
A_{T}=4 \pi r^{2}
$$

Example

- Calculate the surface area of a golf ball that has a diameter of 4.5 cm .

Step 1: find the radius!

$$
r=d / 2=2.25 \mathrm{~cm}
$$

Step 2:

$$
\begin{aligned}
A_{T} & =4 \pi r^{2} \\
& =4(3.14)(2.25)^{2} \\
& =4(3.14)(5.0625) \\
A_{T} & =63.59 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of A Cylinder

- Cylinders have two bases and a lateral surface so we can use the same formula we used for prisms!

$$
A_{T}=2 A_{b}+A_{L}
$$

Area of $\mathbf{1}$ base:	$A=\pi r^{2}$
Area of $\mathbf{2}$ bases:	$A=2 \pi r^{2}$
Lateral Area:	$A=2 \pi r h$

Putting it all together....

$$
A_{T}=2 A_{b}+A_{L} \quad \text { or } \quad A_{T}=2 \pi r^{2}+2 \pi r h
$$

Example:

- A cylinder has a radius of 4 m , and a height of 6 m . What is the lateral area? What is the total area?

Lateral Area: (Remember to show your formula each time!) $\mathrm{A}_{\mathrm{L}}=$

Area of 1 base:
$A_{b}=\pi r^{2}$
=
$=$

Total area:

$$
\begin{aligned}
A_{L} & =2 A_{b}+A_{L} \\
& = \\
& = \\
& =
\end{aligned}
$$

Area of Pyramids

What is the lateral area of this pyramid?
$\mathrm{A}_{\mathrm{L}}=$
=
$=$

Surface Area of Cones

The lateral area of a cone is:
$A_{L}=\pi r s$

Much like a pyramid, there's only ONE base, and the lateral area to deal with.

$$
\begin{aligned}
& A_{T}=A_{B}+A_{L} \\
& A_{T}=\pi r^{2}+\pi r s
\end{aligned}
$$

Example 1

Calculate the total area of a cone with a 20 cm diameter, and 10 cm slant height.

Example 2

Calculate the total area of a cone with an 8 cm radius, and 6 cm height.

What's MISSING from the above sentence?
That's right...we have the height, not the SLANT HEIGHT.
$a^{2}+b^{2}=c^{2}$ Can you use this to find the slant height?

Surface Area of a Sphere

- The good news is that you won't see where this formula comes from unless you take calculus in CEGEP or University. Until then....

$$
A_{T}=4 \pi r^{2}
$$

Example

- Calculate the surface area of a golf ball that has a diameter of 4.5 cm .

