Good afternoon!

Today we will calculate the total surface area of polyhedrons and rounded shapes.

So that we can develop our brain's ability to analyze a 3D shape.

Keys to Success:

- I can identify the solid and correct formulas
- I can identify base(s) versus lateral area
- I can substitute numbers into the formula and use BEDMAS to calculate the total area

Area of A Cylinder

- Cylinders have two bases and a lateral surface so we can use the same formula we used for prisms!

$$A_T = 2A_b + A_L$$
Area of 1 base: $A = \pi r^2$ Area of 2 bases: $A = 2\pi r^2$ Lateral Area: $A = 2\pi rh$

• A cylinder has a radius of 4 m, and a height of 6 m. What is the lateral area? What is the total area?

Lateral Area: (Remember to show your formula each time!) $A_L = 2\pi rh$

- = 2(3.14)(4m)(6m)
- = <u>150.72 m²</u>

Area of 1 base: $A_b = \pi r^2$ $= (3.14)(4)^2$ $= 50.24 m^2$ Total area: $A_L = 2A_b + A_L$ $= 2(50.24 \text{ m}^2) + 150.72 \text{ m}^2$ $= 100.48 \text{ m}^2 + 150.72 \text{ m}^2$ $= 251.20 \text{ m}^2$

Area of Pyramids

Unlike prisms, there is only 1 base. So the area formula will look like this:

$$\mathbf{A}_{\mathrm{T}} = \mathbf{A}_{\mathrm{b}} + \mathbf{A}_{\mathrm{L}}$$

$$A_{L} = \frac{P_{b} \times s}{2}$$

(looks like the triangle formula, no?)

$$\mathbf{A}_{\mathrm{T}} = \mathbf{A}_{\mathrm{b}} + \mathbf{A}_{\mathrm{L}}$$
 or $\mathbf{A}_{\mathrm{T}} = \mathbf{A}_{\mathrm{b}} + \frac{P_{b} \times s}{2}$

What is the *lateral* area of this pyramid?

$$A_{L} = \frac{P_{b} \times s}{2}$$
$$= \frac{(5.2 \times 3) \times (7.4)}{2}$$
$$= 57.72 \text{ cm}^{2}$$

SUMMARY*:

*Try it! Don't like these formulas? Breaking it up into the net still works. It just takes a little longer.

Surface Area of Cones

The lateral area of a cone is:

 $A_L = \pi rs$

Much like a pyramid, there's only ONE base, and the lateral area to deal with.

 $A_{T} = A_{B} + A_{L}$ $A_{T} = \pi r^{2} + \pi rs$

Calculate the total area of a cone with a 20 cm diameter, and 10 cm slant height.

$$A_{B} = \pi r^{2}$$

= (3.14)(10cm)²
= 314 cm²

A_L = πrs = 3.14 (10cm)(10cm) = 314 cm²

 $A_{T} = \pi r^{2} + \pi rs$ = 314 cm² + 314 cm² = 628 cm²

Calculate the total area of a cone with an 8 cm radius, and 6 cm height.

What's MISSING from the above sentence? That's right...we have the height, not the SLANT HEIGHT.

 $a^{2} + b^{2} = c^{2}$ Can you use this to find the slant height? Slant height = 10 cm!

$$A_{B} = \pi r^{2}$$

= (3.14)(8cm)²
= 200.96 cm²

 $A_{L} = \pi rs$ = 3.14 (8 cm)(10cm) = 251.2 cm²

$$A_{T} = \pi r^{2} + \pi rs$$

= 200.96 cm² + 251.2 cm²
= 452.16 cm²

Surface Area of a Sphere

 The good news is that you won't see where this formula comes from unless you take calculus in CEGEP or University. Until then....

$$A_{T} = 4\pi r^{2}$$

• Calculate the surface area of a golf ball that has a diameter of 4.5 cm.

```
Step 1: find the radius!

r = d/2 = 2.25 \text{ cm}

Step 2:

A_T = 4\pi r^2

= 4 (3.14)(2.25)^2

= 4 (3.14)(5.0625)
```

$$A_{\rm T} = 63.59 \ {\rm cm}^2$$

Area of A Cylinder

- Cylinders have two bases and a lateral surface so we can use the same formula we used for prisms!

$$A_{T} = 2A_{b} + A_{L}$$
Area of 1 base:
$$A = \pi r^{2}$$
Area of 2 bases:
$$A = 2\pi r^{2}$$
Lateral Area:
$$A = 2\pi rh$$

• A cylinder has a radius of 4 m, and a height of 6 m. What is the lateral area? What is the total area?

Lateral Area: (Remember to show your formula each time!) $A_L =$

Area of 1 base:Total area: $A_b = \pi r^2$ $A_L = 2A_b + A_L$ ========

Area of Pyramids

Unlike prisms, there is only 1 base. So the area formula will look like this:

$$A_{T} = A_{b} + A_{L}$$

$$A_{L} = \frac{P_{b} \times s}{2}$$

(looks like the triangle formula, no?)

$$\mathbf{A}_{\mathrm{T}} = \mathbf{A}_{\mathrm{b}} + \mathbf{A}_{\mathrm{L}}$$
 or $\mathbf{A}_{\mathrm{T}} = \mathbf{A}_{\mathrm{b}} + \frac{P_{b} \times s}{2}$

What is the *lateral* area of this pyramid?

A_L =

=

=

Surface Area of Cones

The lateral area of a cone is:

 $A_L = \pi rs$

Much like a pyramid, there's only ONE base, and the lateral area to deal with.

 $A_{T} = A_{B} + A_{L}$ $A_{T} = \pi r^{2} + \pi rs$

Calculate the total area of a cone with a 20 cm diameter, and 10 cm slant height.

Calculate the total area of a cone with an 8 cm radius, and 6 cm height.

What's MISSING from the above sentence? That's right...we have the height, not the SLANT HEIGHT.

 $a^2 + b^2 = c^2$ Can you use this to find the slant height?

Surface Area of a Sphere

 The good news is that you won't see where this formula comes from unless you take calculus in CEGEP or University. Until then....

$$A_{T} = 4\pi r^{2}$$

• Calculate the surface area of a golf ball that has a diameter of 4.5 cm.