Warm Up

What were the success criteria from last class?

Agenda:

1. Homework corrections (page 110 and 111)
2. Team questions
3. Volume of Cones and Pyramids
4. Practice

g)

h)

i) 12 half oranges are eaten at half-time at a soccer game.

The radius of each are 3 cm . What is the total volume of the oranges?
$r=5 \mathrm{dm}$. Determine the volume in cm^{3}
$V=4 / 3 \pi r 3$
$=4 / 3(3-1)(5)^{3}=4 / 3(3.14)(6)^{5}$
$=523.3$ arm 3×1000 $V=52333$ ch

$$
\begin{gathered}
a=6 \mathrm{~cm} \\
V=4 / 31) r^{3} \\
=4 / 3(3.14)(6)^{5}
\end{gathered}
$$

1000 \qquad
2) Determine the volume of each of these prisms.
a) Apothem is 1.65 m

b)

c)

$$
V=A_{B} \times h
$$

$$
=\left(\frac{3 \times 4}{2}\right)(6)
$$

$$
\begin{aligned}
& 0.8 \mathrm{dm}=2.8 \mathrm{dm} \\
& =A_{B} \times h \\
& =(0.8 \times(0.8)(2.8)
\end{aligned}
$$

$$
V=36 \mathrm{~mm}^{3}
$$

d)

e)

f)

$$
\begin{aligned}
8 \mathrm{~cm} & =A_{B} \times h \\
& =8 \times 16 \times 5.2 \\
V & =665.6 \mathrm{~cm}^{3}
\end{aligned}
$$

3) Calculate the volume of these cylinders
a)

Radius $=3 \mathrm{dm}$ Height $=5 \mathrm{dm}$

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=3.14(3)^{2}(5)
\end{aligned}
$$

b)

$$
\begin{aligned}
r & =d \div 2 \\
& =6.212
\end{aligned}
$$

Diameter $=6.2 \mathrm{~cm}^{r}$ $=3.1$

$$
\begin{aligned}
& \text { Height }=7.4 \mathrm{~cm} \\
& V=\pi r^{2} h \\
& V=3.14 \times(3.1)^{2} \times 7.4 \\
& V=223.3 \mathrm{~cm}^{3}
\end{aligned}
$$

c)

Area of base $=314 \mathrm{~m}^{2}$ Height $=1 / 2$ the radius

1) Calculate the volume of each object. Remember to SHOW ALL work and include units!

Radius $=17 \mathrm{~cm}$ $V=4 / 3 \pi r^{3}$
$=(4 / 3)(3.14)(17)^{3}$
$V=20569 \mathrm{~cm}^{3}$
d) Bowl soup with a radius 9 cm.

$V=4 / 3 \pi r^{3}$

e) The circumference of Jupiter
is $.5 \times 10^{5} \mathrm{~km}$. Hint: $\mathrm{c}=\pi \mathrm{d}$

$$
d=15923.6 \mathrm{~km}
$$

g)

$r=5 \mathrm{dm}$. Determine the volume in cm^{3}
h)

$a=6 \mathrm{~cm}$
$V=4 / 3 \pi r^{3}$

$$
V=4 / 3 \pi r^{3}
$$

$$
\begin{array}{ll}
=4 / 3(3.14)(5)^{3} &
\end{array}
$$

2) Determine the volume of each of these prisms.
a) Apothem is 1.65 m

$16.3 \mathrm{~m}^{3}$

$$
V=A_{B} \times h
$$

d)

$$
=10.2 \times 3.8
$$

$$
V=38.76 \mathrm{~mm}^{3}
$$

3) Calculate the volume of these cylinders
a)

Radius $=3 \mathrm{dm}$ Height $=5 \mathrm{dm}$
b)

$$
\begin{aligned}
V & =A_{B} \times h \\
& =\left(\frac{3 \times 4}{2}\right)(6) \\
V & =36 \mathrm{~mm}^{3}
\end{aligned}
$$

$$
V=A_{B} \times h
$$

$$
=\left(\frac{6 \times 4}{2}\right) \times 24.3
$$

$V=291.6 \mathrm{~cm}^{3}$
b)

$$
\begin{aligned}
r & =d \div 2 \\
& =6.212
\end{aligned}
$$

Diameter $=6.2 \mathrm{~cm}$

$$
=3.1
$$

$$
\begin{array}{ll}
\text { Height }=7.4 \mathrm{~cm} & \text { Height }=1 / 2 \text { the radius } h=1 / 2 \times 10= \\
V=\pi r^{2} \\
V=3.14 \times(3.1)^{2} \times 7.4 & V=\pi r^{2} h \\
V=223.3 \mathrm{~cm}^{3} & =3.14 \times 10 \times 10 \times 5
\end{array}
$$

c)

$$
\begin{aligned}
V & =A_{B} \times h \\
& =(0.8 \times 0.8)(2.8 \\
V & =1.79 \mathrm{dm}^{3}
\end{aligned}
$$

c)

$$
\begin{aligned}
& A=\pi r^{2} \\
& 314=\frac{3.74 r^{2}}{7}
\end{aligned}
$$

Area of base $=314 \mathrm{~m}^{2} \quad r=10$

Today we will calculate the volume of cones, pyramids

So that we can determine space and capacity

Keys to Success:
\checkmark Identify the correct formula
\checkmark Substitute the values given
\checkmark Solve for the solution using correct units

Volume of a Cone

$$
V=\frac{\pi r^{2} h}{3}
$$

Example:
$\mathrm{V}=\frac{\pi r^{2} h}{3}$
$V=3.14 \times 8 x 8 \times 18 / 3$
$\mathrm{V}=1205.76 \mathrm{~cm}^{3}$

Volume of a Pyramid

$$
V=\frac{A_{B} \times h}{3}
$$

Example:

$$
\begin{aligned}
& \mathrm{V}=\frac{A_{B} \times h}{3} \\
& \mathrm{~V}=6 \times 6 \times 15 / 3 \\
& \mathrm{~V}=180 \mathrm{~m}^{3}
\end{aligned}
$$

Practice

1. Workbook page 112

Test: Tuesday, February $\mathbf{2 3}^{\text {rd }}$ Surface Area and Volume

Today we will determine the volume of decomposable solids, while exploring the similarities and differences between surface area and volume.
So that we can determine the space an object takes up.
Keys to Success:

1. Formula
2. Substitute
3. Solution with correct units

Warm up

Calculate the capacity in litres of a cone with a slant height of 5 cm , and a radius of 3 cm .

Use pythag to find the height
$\mathrm{V}=\frac{\pi r^{2} h}{3}$

$$
\begin{aligned}
& a^{2}=c^{2}-b^{2} \\
& a^{2}=5^{2}-3^{2}
\end{aligned}
$$

$V=3.14 \times 3 \times 3 \times 4 / 3$
$a^{2}=16$
$V=37.68 \mathrm{~cm}^{3}$
$\mathrm{a}=4$ = height
$37.68 \mathrm{~cm} 3 \div 1000=0.0377 \mathrm{dm} 3=0.0377 \mathrm{~L}$

Practice Test - Workbook, pages 103-107

Changes to make:
Page 104 Short Answer
\#1, 2, 3 - Find surface area AND volume of each

Page 106 Long Answer
\#2. The value of the amber gem is $\$ 100 / \mathrm{mm}^{3}$

Finished?
Start making your memory aid...double check all formulas and include examples! :)

