## Warm Up

- What is the scale factor k between triangle A and C
- 2. What is the scale factor k between triangle A and B?
- 3. Using pythag only once, find the hypotenuse of both triangles B and C



#### Ratio of Side lengths vs Perimeters



 $\frac{\text{Perimeter EFGH} = 9.8 + 4.2 + 4.9 + 7}{\text{Perimeter ABCD} \quad 7 + 3 + 3.5 + 5} \\ = \frac{25.9}{18.5} \\ = 1.4$ 

### Practice

### Workbook – page 121

### #1 and 3

### 5 minutes!

| TEAM 1                                                | TEAM 2                                                                                                |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1. Draw two rectangles with the following dimensions: | <ol> <li>Draw two right angle<br/>triangles with the following<br/>dimensions for base and</li> </ol> |
| 15cm x 3 cm; and 5 cm x 1 cm                          | height:                                                                                               |
| 2. Calculate the area of each                         | 6cm x 8 cm; and 12 cm x 16 cm                                                                         |
| 3. What is the ratio k for sides?                     | 2. Calculate the area of each                                                                         |
| 4. What is the ratio k for areas?                     | 3. What is the ratio k for sides?                                                                     |
| 5. What do you notice?                                | 4. What is the ratio k for areas?                                                                     |
|                                                       | 5. What do you notice?                                                                                |

## #learning

Today we will explore how scale factor changes when comparing side lengths, areas and volumes of similar figures.

#### **Keys to Success:**

- I can determine the scale factor
- I can convert my scale factor between length, area and volume (k, k<sup>2</sup>, k<sup>3</sup>)

# Scale factor k for Side, Area and Volume

- K ⇒ side ratio (same as perimeter ratio)
- k<sup>2</sup> ⇒ area ratio
- $k^{3} \Rightarrow$  volume ratio

Notice how it's the same as the units used for each!

## **Similar Figure Steps**

- Find k = big ÷ small (using two similar measures)
- 2. Find the k that you need (k,  $k^2$  or  $k^3$ )
- 3. Multiply or divide to find the missing measure you need (using the similar measure)!

## k for Similar Perimeter/Side

In the diagram below,  $\triangle ABC \sim \triangle A'B'C'$ . Find the perimeter of  $\triangle A'B'C'$ .



## Warm Up

These triangles are similar.
 What is the length of the base of the smaller triangle?



14 cm

2. Two pentagons have an area of 50cm<sup>2</sup> and 450cm<sup>2</sup>. What is the scale of

- a) Areas? k<sup>2</sup>
- b) Side lengths? k

### Kicking the k around...

#### k = 4.5, what is k<sup>3</sup>?

### k<sup>2</sup> = 100, what is k?

### k<sup>3</sup> = 125 000, what is k<sup>2</sup>?



## #learning

**Today we will** convert scale factors and use them to find a missing measure in a similar solid.

### **Keys to Success:**

- I can determine the scale factor
- I can convert my scale factor between length, area and volume (k, k<sup>2</sup>, k<sup>3</sup>)
- I can use the appropriate scale factor to find a missing measure in a similar solid



### Similar Areas

In the diagram below,  $\triangle ABC \sim \triangle DEF$ . Find the area of  $\triangle DEF$ .



## Similar Volumes

The two cylinders shown below are similar. What is the volume of the smaller cylinder?

11 cm 1. k = 11/8 = 1.375  $2. \text{ k}^3 = 1.375^3 = 2.6$   $3. \text{ V}_{\text{small}} = \text{ V}_{\text{big}} \div \text{ k}^3$   $\text{ V}_{\text{small}} = 560 \div 2.6$   $\text{ V}_{\text{small}} = 215.4 \text{ cm}^3$ 

### **Practice & Process**



#### **Next class: Destination Check and QUIZ!**

### TEST NEXT WEEK – World 8 (Missing Measures & Similar Figures)