Warm Up

1. What is the scale factor \boldsymbol{k} between triangle A and C
2. What is the scale factor \boldsymbol{k} between triangle A and B ?
3. Using pythag only once, find the hypotenuse of both triangles B and C

Ratio of Side lengths vs Perimeters

Perimeter EFGH $=9.8+4.2+4.9+7$ Perimeter ABCD 7+3+3.5+5

$$
\begin{aligned}
& =\frac{25.9}{18.5} \\
& =1.4
\end{aligned}
$$

Practice

Workbook - page 121

\#1 and 3

5 minutes!

1. Draw two rectangles with the following dimensions:
$15 \mathrm{~cm} \times 3 \mathrm{~cm}$; and $5 \mathrm{~cm} \times 1 \mathrm{~cm}$
2. Calculate the area of each
3. What is the ratio k for sides?
4. What is the ratio k for areas?
5. What do you notice?
6. Draw two right angle triangles with the following dimensions for base and height:
$6 \mathrm{~cm} \times 8 \mathrm{~cm}$; and $12 \mathrm{~cm} \times 16 \mathrm{~cm}$
7. Calculate the area of each
8. What is the ratio k for sides?
9. What is the ratio k for areas?
10. What do you notice?

\#learning

Today we will explore how scale factor changes when comparing side lengths, areas and volumes of similar figures.

Keys to Success:

- I can determine the scale factor
- I can convert my scale factor between length, area and volume (k, k^{2}, k^{3})

Scale factor k for Side, Area and Volume

$\mathrm{K} \Rightarrow$ side ratio (same as perimeter ratio)
$k^{2} \Rightarrow$ area ratio
$K^{3} \Rightarrow$ volume ratio

Notice how it's the same as the units used for each!

Similar Figure Steps

1. Find $\mathrm{k}=$ big \div small (using two similar measures)
2. Find the k that you need $\left(k, k^{2}\right.$ or $\left.k^{3}\right)$
3. Multiply or divide to find the missing measure you need (using the similar measure)!

k for Similar Perimeter/Side

In the diagram below, $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$.
Find the perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Warm Up

2. Two pentagons have an area of $50 \mathrm{~cm}^{2}$ and $450 \mathrm{~cm}^{2}$. What is the scale of
a) Areas? $\mathbf{k}^{\mathbf{2}}$
b) Side lengths? \mathbf{k}

Kicking the k around...

$k=4.5$, what is k^{3} ?

$$
k^{2}=100, \text { what is } k ?
$$

$$
k^{3}=125000, \text { what is } k^{2} ?
$$

\#learning

Today we will convert scale factors and use them to find a missing measure in a similar solid.

Keys to Success:

- I can determine the scale factor
- I can convert my scale factor between length, area and volume (k, k^{2}, k^{3})
- I can use the appropriate scale factor to find a missing measure in a similar solid

Scale Factor k-chart

side ratio $(k) \quad$ area ratio $\left(k^{2}\right) \quad$ volume ratio $\left(k^{3}\right)$
Square root it

Cube root it

Similar Areas

In the diagram below, $\triangle A B C \sim \triangle D E F$. Find the area of $\triangle D E F$.

$$
\begin{aligned}
& \text { 1. } \mathrm{k}=30 / 20=1.5 \\
& \text { 2. } \mathrm{k}^{2}=1.52=2.25 \\
& \text { 3. } \mathrm{A}_{\text {big }}=\mathrm{A}_{\text {small }} \times \mathrm{k}^{2} \\
& \mathrm{~A}_{\text {big }}=18 \times 2.25 \\
& \mathrm{~A}_{\text {big }}=40.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Similar Volumes

The two cylinders shown below are similar. What is the volume of the smaller cylinder?

$$
\begin{aligned}
& \text { 1. } \mathrm{k}=11 / 8=1.375 \\
& \text { 2. } \mathrm{k}^{3}=1.375^{3}=2.6 \\
& \text { 3. } \mathrm{V}_{\text {small }}=\mathrm{V}_{\mathrm{big}} \div \mathrm{k}^{3} \\
& \mathrm{~V}_{\text {small }}=560 \div 2.6 \\
& \mathrm{~V}_{\text {small }}=215.4 \mathrm{~cm}^{3}
\end{aligned}
$$

Practice \& Process

page 123-125

Next class: Destination Check and QUIZ!

TEST NEXT WEEK - World 8 (Missing Measures \& Similar Figures)

