Warm Up (Quick Review!)

$$
\begin{array}{lll}
\text { 1) } 3^{2}= & \text { 2) } 10^{2}= & \text { 3) } 12^{3}= \\
\text { 4) } 2^{2} \times 2^{3}= & \text { 5) } 2^{2}+2^{3}= \\
\text { 6) } \sqrt[3]{27} & \text { 7) }(\sqrt{36})^{2} & \text { 8) } \sqrt{3 \times 75}
\end{array}
$$

Answers:

1) 9
2) 100
3) 1728
4) 32
5) 12
6) $3 \quad 7) 36$
7) 15

SAMDEB Mind Tap

Find the missing value in the following:

1. The perimeter of a square is 36 cm . What is the length of each side?
2. The area of a triangle is $80 \mathrm{~cm}^{2}$. If the base measures 10 cm , what is the height?
3. Find the radius of a circle with area of $40.2 \mathrm{~mm}^{2}$.

Today we will calculate the missing measure of 3-D objects.

So that we can work backwards from surface area and volume.

Keys to Success:

- Use the correct formula
- Substitute in all values that you know
- Use opposite operations to isolate the missing measure, using BEDMAS backwards (SAMDEB)

TEAM ACTIVITY

1. Write down the formula
2. Plug in what you know
3. Isolate the missing value by
\checkmark Working backwards using SAMDEB
\checkmark Using opposite operations
4. Try the example! $;$

Steps for Missing Measures

1. Write down the formula
2. Plug in what you know
3. Isolate the missing value by
\checkmark Working backwards using SAMDEB
\checkmark Using opposite operations

Example 1

What is the length of one side of a cube with a total volume of $1331 \mathrm{~cm}^{3}$?

$$
s=?
$$

Step 1: formula!

$$
\mathrm{V}=\mathrm{s}^{3}
$$

Step 2: plug in what you know!
$(1331)=s^{3}$

Step 3: do the opposite of cubing a number!

Back to our example

What is the length of one side of a cube with a total volume of $1331 \mathrm{~cm}^{3}$?

Step 1: formula!
$V=s^{3}$
Step 2: plug in what you know!
$(1331)=s^{3}$
Step 3: cube root both sides!

$$
\begin{array}{r}
\sqrt[3]{1331}=\sqrt[3]{s^{3}} \\
s=11 \mathrm{~cm}
\end{array}
$$

Example 2:

What is the length of a cube whose volume is $512 \mathrm{~cm}^{3}$?

$$
\begin{gathered}
V=a^{3} \\
(512)=a^{3} \\
\sqrt[3]{512}=\sqrt[3]{a^{3}} \\
a=8 \mathrm{~cm}
\end{gathered}
$$

Example 3

The volume of a sphere is $179.5 \mathrm{~cm}^{3}$. What is its radius?

$$
\begin{aligned}
& V=\frac{4 \pi r^{3}}{3} \\
& 179.5=\frac{4 \pi r^{3}}{3} \\
& (3)(179.5)=(3) \frac{4 \pi r^{3}}{3} \\
& 537=4 \pi r^{3} \\
& \div 4 \pi \quad \div 4 \pi \\
& 42.8=r^{3} \\
& \sqrt[3]{42.8}=\sqrt[3]{r^{3}} \\
& r=3.5 \mathrm{~cm}
\end{aligned}
$$

\#learning

Today we will calculate the missing measure of 3-D objects.

So that we can work backwards if given surface area and volume.

Keys to Success:

- Use the correct formula
- Substitute numbers that you know
- Use BEDMAS backwards (SAMDEB)
- Use opposite operations to cancel
- Isolate the missing measure

Warm Up

1. If the total volume of a sphere is $120 \mathrm{~cm}^{3}$, what is its radius?
2. If we know that the lateral area of a cylinder is $483 \mathrm{~cm}^{2}$, and its radius measures 4 cm , what is it's height?

Warm-Up Solutions

1. If the total volume of a sphere is $120 \mathrm{~cm}^{3}$, what is its radius?
$V=\frac{4 \pi r^{3}}{3}$
$r=\sqrt[3]{\frac{3 V}{4 \pi}}$
$r=\sqrt[3]{\frac{3 \times 120}{4 \times 3.14}}$
$r=\sqrt[3]{\frac{360}{12.56}}$

Warm Up Solutions

2. If we know that the lateral area of a cylinder is $483 \mathrm{~cm}^{2}$, and its radius measures 4 cm , what is it's height?
$\mathrm{A}_{\mathrm{L}}=\pi \mathrm{rh}$ $\mathrm{h}=\mathrm{A}_{\mathrm{L}} \div \pi \div \mathrm{r}$
$h=483 \div 3.14 \div 4$
$\mathrm{h}=38.5 \mathrm{~cm}$

WORK PERIOD

\checkmark PAGE 115
$\checkmark 116$
\checkmark Page 117 \#5

REMINDER:

TAKE-HOME SITUATIONAL PROBLEM DUE MARCH $11^{\text {TH }}-$ WORKBOOK, PAGE 102

Two Options for Showing Work

Ex: Find the side length of a cube with a volume

 of $729 \mathrm{~mm}^{3}$.| 1. Rearrange formula
 2. Substitute
 3. Solve | 1. Substitute
 2. Rearrange
 3. Solve |
| :--- | :--- |
| $V=s^{3}$ | $V=s^{3}$ |
| $s=\sqrt[3]{V}$ | $729=s^{3}$ |
| $s=\sqrt[3]{729}$ | $\sqrt[3]{729}=\sqrt[3]{s^{3}}$ |
| $s=9 m m$ | $s=9 m m$ |

Warm UP

The surface area of a cone is $219.8 \mathrm{~cm}^{2}$.
What is the slant height of the cone?
$\mathrm{S} A=\pi r^{2}+\pi r s$
$219.8=(3.14 \times 5 \times 5)+(3.14 \times 5 \times s)$
$219.8=78.5+15.75 \mathrm{~s}$
-78.5 -78.5
$219.8=78.5+15.75 \mathrm{~s}$
$\underline{141.3}=\underline{15.75 \mathrm{~s}}$
$15.75 \quad 15.75$
$\mathrm{s}=8.97 \mathrm{~cm}$

Warm Up

The lateral area of a cylinder is $640.56 \mathrm{~mm}^{2}$. What is the diameter?
$A_{L}=2 \pi r h$
$\mathrm{h}=17 \mathrm{~mm}$
$640.56=2 \times 3.14 \times r \times 17$
$r=640.56 \div 2 \div 3.14 \div 17$
$d=r \times 2$
$r=6 \mathrm{~mm}$
$d=6 \times 2$
$\mathrm{d}=12 \mathrm{~mm}$

Today we will determine a missing measure using equivalent solids.

Keys to Success

- Find the surface area or volume of one solid
- Use this to find a missing measure in an equivalent solid

Example 1

A cube and a sphere have the same volume. If the sphere's radius is 3 cm , what is the cube's total area?
total area?

$$
\begin{aligned}
V_{\text {sphere }} & =4 / 3 \pi r^{3} \\
& =4 / 3 \pi(3)^{3} \\
V & =113.04 \mathrm{~cm}^{3}
\end{aligned}
$$

Cube

$$
\frac{C u b e}{S A}=6 S^{2}
$$

$$
S A=140.6 \mathrm{~cm}^{2}
$$

Cube

$$
\begin{aligned}
& s=\sqrt[3]{V} \\
&=\sqrt[3]{113} \\
& s=4.84 \mathrm{~cm}
\end{aligned}
$$

Example 2

A cylinder and a cone have the same volume. What is the total area of the cylinder? The cone has a radius of 4 dm and a height of 9 dm .

Cons

$$
v=\pi r^{2} h / 3
$$

$$
=3.4 \times 4^{2} \times 9 \div 3
$$

Solids

A cylinder and a cone have the same lime. What is the total area of the cylinder?

) In LEVEL RED, Cube encounters the

Equivalent Solids Workout

1. Team Questions page 118 -\#3 and 4
2. Destination Check
3. Page 119
