Powers

If you have the same number multiplied together a bunch of times, you can use powers to express all that multiplication

$$
\underbrace{a \times a \times \ldots \times a}_{n \text { factors }}=a^{n}
$$

" a " - the base
" n " - the exponent
" $a^{n "}$ - the power

Examples:

$3^{2}=3 \times 3=9$,
$3^{3}=3 \times 3 \times 3=27$,
$(-3)^{3}=(-3) \times(-3) \times(-3)=-27$

RULES (MEMORIZE)!

$\boldsymbol{a}^{1}=\boldsymbol{a} \quad$ Any number to the power of 1 is just itself!

$$
E x: 5^{1}=5, \quad 20^{1}=20, \quad(-6242)^{1}=-6242
$$

$\boldsymbol{a}^{0}=1 \quad$ Any number to the power of 0 is 1 .
Ex: $5^{\circ}=1,45^{\circ}=1, \quad(-6242)^{0}=1$

Watch is what happens if you're lazy and you forget about the brackets!

- $3^{2=}$? Take 30 seconds...work it out!

The exponent only "sees" the number right next to it. If the brackets are missing, the exponent doesn't "see" the negative sign.
$-3^{2}=-(3)(3)=-9$
Compare with $(-3)^{2}=9$

Summary

- $a^{n}=a \times a \times a \times a \ldots \times a$ (a multiplied by itself n times)
- $a^{1}=a$
- $a^{0}=1$
- $(-a)^{n} \neq-a^{n}$ (Brackets are really important!)

PRACTICE: Page 5 in workbook \#1, \#2, \#3

- We will correct them together before the end of class.

1.4 Exponent Laws for Multiplication and Division

Powers

If you have the same number multiplied together a bunch of times, you can use powers to express all that multiplication

$$
\underset{n \text { factors }}{a \times a \times \ldots \times a}=a^{n}
$$

" a " - the base
" n " - the exponent
" $a^{n "}$ - the power

Examples:

$3^{2}=3 \times 3=9$,
$3^{3}=3 \times 3 \times 3=27$,
$(-3)^{3}=(-3) \times(-3) \times(-3)=-27$

RULES TO KNOW!

Try:
$5^{1}=\ldots 20^{1}=\ldots \quad(-6242)^{1}=$
$\boldsymbol{a}^{1}=\boldsymbol{a} \quad$ Any number to the power of 1 is just itself!

Try:
$5^{0}=\ldots \quad 45^{\circ}=\quad(-6242)^{0}=$
$\boldsymbol{a}^{0}=1 \quad$ Any number to the power of 0 is 1.

Watch is what happens if you're lazy and you forget about the brackets!

- $3^{2=}$? Take 30 seconds...work it out!

The exponent only "sees" the number right next to it. If the brackets are missing, the exponent doesn't "see" the negative sign.
$-3^{2}=-(3)(3)=-9$
Compare with $(-3)^{2}=9$

Summary

- $a^{n}=a \times a \times a \times a \ldots \times a$ (a multiplied by itself n times)
- $a^{1}=a$
- $a^{0}=1$
- $(-a)^{n} \neq-a^{n}$ (Brackets are really important!)

Investigation

- $3^{2} \times 3^{4}=$ (expand this into factors)

$$
\begin{aligned}
& =3 \times 3 \times 3 \times 3 \times 3 \times 3 \\
& =3^{6}
\end{aligned}
$$

Re-write this expression using only one exponent. (Don't evaluate it)

$$
\begin{aligned}
8^{4} \times 8^{6} & = \\
& =8^{10}
\end{aligned}
$$

Investigation 2

$$
\begin{aligned}
7^{6} \div & 7^{2}=\frac{ヌ \times ヌ \times 7 \times 7 \times 7 \times 7}{ヌ \times 又} \\
& =7 \times 7 \times 7 \times 7 \\
& =7^{4}
\end{aligned}
$$

Try： $4^{7} \div 4^{3}$

$$
\begin{aligned}
& =\frac{4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4}{4 \times 4 \times 4} \\
& =4 \times 4 \times 4 \times 4 \\
& =4^{4}
\end{aligned}
$$

$$
5^{4} \div 4^{2}=\frac{5 \times 5 \times 5 \times 5}{4 \times 4}
$$

Nothing cancels if the bases aren't the same!

Exponent Laws

1. Product of powers:
$a^{m} x a^{n}=a^{(m+n)}$
2. Product of quotients:
$a^{m} \div a^{n}=a^{(m-n)}$
THESE ONLY WORK IF THE BASES ARE THE SAME

- Examples (together):

Simplify the following expressions:

1) $a^{2} \cdot a^{7} \cdot a=a^{10}$
2) $5^{4} \times 5^{9}=5^{13}$
3) $\frac{4 x^{5}}{2 x^{2}}=2 x^{3}$
4) $\left(4 x^{3} y^{2}\right)\left(-2 x y^{6}\right)=8 x^{4}$
5) $\frac{10 x^{5} y^{2}}{5 x^{1} y^{6}}=2 x^{4} y^{-4}$

- Example 5
$5^{3}+5^{2}$
$125+25=150$

How many of you originally thought 5^{5} ? (3125)

THERE IS NO SHORTCUT TO ADDITION OR SUBTRACTION OF POWERS. EVER.

Power of a Power

$$
\begin{aligned}
\left(2^{2}\right)^{4} & =(2 \times 2)^{4} \\
& =(2 \times 2)(2 \times 2)(2 \times 2)(2 \times 2) \\
& =(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2) \\
& =2^{8}
\end{aligned}
$$

OR

$$
\begin{aligned}
\left(2^{2}\right)^{4} & =2^{(2 \times 4)} \\
& =2^{8}
\end{aligned}
$$

POWER RULE:
$\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}{ }^{(\mathrm{mxn})}$

Power of a Product

$(a \cdot b)^{n}=a^{n} b^{n}$
 Power rule applies to everything inside the brackets.

Examples

$$
\begin{aligned}
(4 z)^{2} & =4^{2} z^{2} \\
& =16 z^{2}
\end{aligned}
$$

$$
\left(-2 a b^{2}\right)^{2}=(-2)^{2} a^{2}\left(b^{2}\right)^{2}
$$

$$
=4 a^{2} b^{4}
$$

Power of a Quotient

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

Example
$\left(\frac{5 a^{2}}{4 b}\right)^{2}=$

$$
=\frac{25 a^{4}}{16 b^{2}}
$$

Summary

POWER RULE:
 $\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{(\mathrm{mxn})}$

Power of a Product $(a \cdot b)^{n}=a^{n} b^{n}$

Homework:
(circle these in your workbook NOW!)
Page 7 - Power of a Power
1, 2, 3
Page $7 \& 8$ - Power of a Product
1, 2, 3bdf
Page 8 - Power of a Quotient
1, 2abc,

Power of a Quotient

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

Lesson 1.5 - NEGATIVE POWERS?!

Let's see what a negative power means...

$$
\begin{array}{ll}
4^{3} \div 4^{5} & 4^{3} \div 4^{5} \\
=4^{3-5} & =\frac{4 \times 4 \times 4}{4 \times 4 \times 4 \times 4 \times 4} \\
=4^{-2} \xrightarrow{\longrightarrow} & =\frac{1}{4^{2}}
\end{array}
$$

A base raised to a NEGATIVE power is equivalent to 1 over the original base (the reciprocal) with the same POWER without the negative.
eg. 2 Write as a positive power

$$
\begin{array}{ll}
3^{-2}=\frac{1}{3^{2}} & p^{-3}=\frac{1}{p^{3}} \\
2^{-2}=\frac{1}{2^{2}} & \frac{a^{3}}{a^{7}}=a^{-4}=\frac{1}{a^{4}}
\end{array}
$$

$$
\left(10^{2}\right)\left(10^{-6}\right)=10^{-4}=\frac{1}{10^{4}}
$$

$$
\frac{x^{5} y^{-3}}{x^{10} y^{-12}}=x^{-5} y^{9}=\frac{y^{9}}{x^{5}}
$$

