MUltiplying and dividing Polynomials

PRoduct of monomial and polynomial

Ex 1:
3 ($\mathrm{x}+4$)
$=3 \mathrm{x}+12$

Ex 2:
$3 \mathrm{x}(\mathrm{x}+4)$
$=3 \mathrm{x}^{2}+12 \mathrm{x}$
Remember the invisible exponent of 1 on the x .
Add the exponents!

- Ex 3:
$-2 \mathrm{x}^{2}\left(3 \mathrm{x}^{3}-2 \mathrm{x}\right)$
$=-6 x^{5}+4 x^{3}$

Keys:

- Think of rainbows!
- Multiply the numbers first (watch signs)
- Multiply the variables (keep base, add exponents)

DIVIDING A POLYNOMIAL BY A MONOMIAL

Ex 4:
$\frac{18 x^{3}}{6}=3 x^{3}$

Ex 5:

$$
\frac{18 x^{3}}{6 x}=3 x^{2}
$$

we learned about Quotient
Rules for exponents!

Ex 6:

$$
\frac{36 x^{10} y^{7}}{9 x^{7} y^{3}} \quad=4 x^{3} y^{4}
$$

Hints: Chop into 3 sections! Coefficients first, then x stuff, then y stuff

Ex 7:
$\frac{16 x^{4}-12 x^{2}+4 x}{4 x}$
$=\frac{16 x^{4}}{4 x}-\frac{12 x^{2}}{4 x}+\frac{4 x}{4 x}$
$=4 x^{3}-3 x+1$

FOIL - MUltiplying

BINOMIALS

Multiplying Binomials

Example 1
$=(\mathrm{x})(\mathrm{x})+(\mathrm{x})(1)+(2)(\mathrm{x})+(2)(1)$
$=x^{2}+x+2 x+2$

FOIL

F: First
O: Outside
I: Inside
L: Last
$=x^{2}+3 x+2$

Multiplying Binomials Example 2
 $(2 \mathrm{x}-3)\left(\mathrm{x}^{2}+3\right)$
 $=(2 \mathrm{x})\left(\mathrm{x}^{2}\right)+(2 \mathrm{x})(3)+(-3)\left(\mathrm{x}^{2}\right)+(-3)(3)$
 $=2 x^{3}+6 x+-3 x^{2}+-9$
 $=2 x^{3}-3 x^{2}+6 x-9$
 FOIL
 F: First
 O: Outside
 I: Inside
 L: Last

MULTiPLYing Binomials

- Example 3
$(x-1)^{2}$

$$
\begin{aligned}
& =(x-1)(x-1) \\
& =x^{2}-x-x+1 \\
& =x^{2}-2 x+1
\end{aligned}
$$

FOIL

F: First
O: Outside
I: Inside
L: Last

Finding the Greatest Common Factor

GCF = the largest number and power that each term can be divided by in an expression

Ex: $2 x^{3} y^{3}+4 x^{2} y^{5}$

Questions to consider:
\square What is the largest number that we can divide both terms by?
\square What is the largest power that all terms can be divided by for each base?

$$
\mathrm{GCF}=2 x^{2} y^{3}
$$

Find THE GREATEST COMMON FACTOR

Ex 2:

$$
25 m^{9} n^{7}+15 m^{3} n^{5}-10 m n^{8}
$$

$\mathrm{GCF}=5 m n^{5}$

